

Origin of the Gravitational Force

- Derivation from the Fundamental Force -

Version-2025.10

Publication: "The origin of the gravitational force - Derivation from the fundamental force"

<https://doi.org/10.1142/S242494242550015X>

Between energies,

Gravitational force: act on amounts of energy

Fundamental force: act on momentums (movements of energy)

Ultimate question:

Is the **gravitational force derived from the fundamental force**,

or

does it exist **independently as a law?**

< Energy Circulation Theory (ECT) >

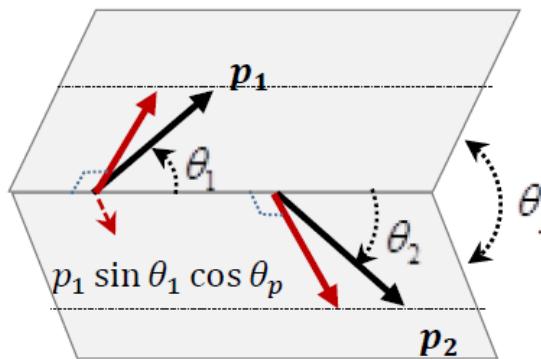
ECT: logical development from two premises

Premises:

(1) Energy can be expressed by an intrinsic energy and its velocity.

$$E = E_1 V_1^2 = E_2 V_2^2 = mc^2$$

(2) Force works between momentums (Fundamental Force).



$$F = K_f \frac{\mathbf{r}\mathbf{p}_1 \cdot \mathbf{r}\mathbf{p}_2}{d^2} = K_f \frac{p_1 p_2}{d^2} \cos \theta_p \sin \theta_1 \sin \theta_2$$

r**p**: orthogonal momentum to the distance $r_p = p \sin \theta$

Intra-circulation force: (form an energy circulation)

Between local momentums $\Delta\mathbf{p}_0$ and $\Delta\mathbf{p}_\theta$: (μ : radius) (See Fig. on p13)

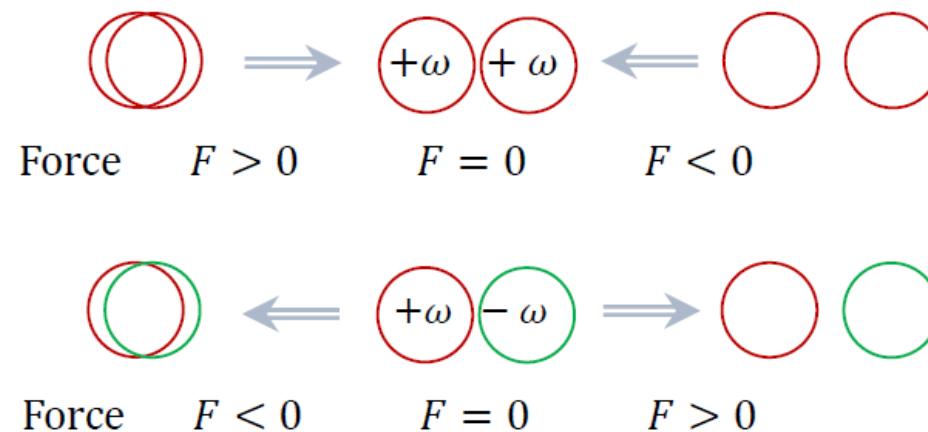
$$\Delta F = K_f \frac{\Delta p_0 \Delta p_\theta}{d^2} \sin \frac{\theta}{2} \sin \frac{-\theta}{2} = -K_f \frac{\Delta p_0 \Delta p_\theta}{4\mu^2}, \quad d = 2\mu \sin \frac{\theta}{2}$$

Centripetal force on $\Delta\mathbf{p}_0$ from the whole circulation:

$$cF_\perp = -K_f \frac{\Delta p_0}{4\mu^2} \int_0^{2\pi} \Delta p_\theta \sin \frac{\theta}{2} d\theta = -K_f \frac{p \Delta p_0}{2\pi\mu^2}$$

Inter-circulation force:

- (1) Orthogonal interaction
- (2) Flat interaction



< Cosmic separation >

Energy: Continuum vibrating in multiple (M) dimensions

Can be expressed in **any number** of dimensions

2D expression: $E\psi_2 = E[X_1 \ X_2] = E\mu(\cos \omega t + i \sin \omega t) = E\mu \exp(i\omega t)$

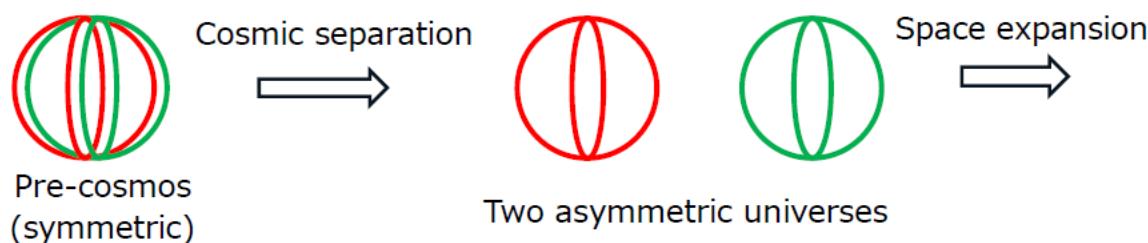
Pre-cosmos: Symmetric – coupled pairs of conjugate circulations

$$E_{pre}\psi_2 = E_{pre}\mu(\varphi: \varphi^*), \quad \varphi = \exp(i\omega t), \varphi^* = \exp(-i\omega t)$$

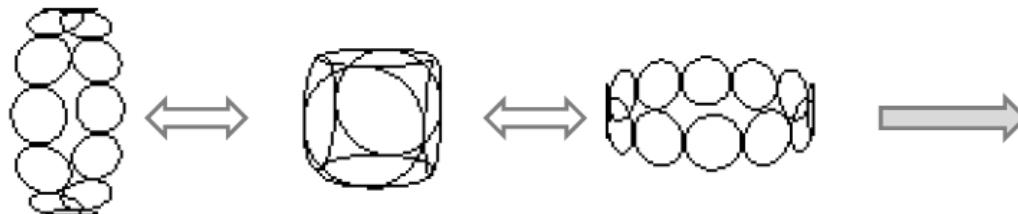
$$E_{pre}\psi_M = E_{pre}\mu(\varphi_{12}:\varphi_{12}^* + \varphi_{34}:\varphi_{34}^* + \varphi_{56}:\varphi_{56}^* \dots)$$

Cosmic separation to two universes:

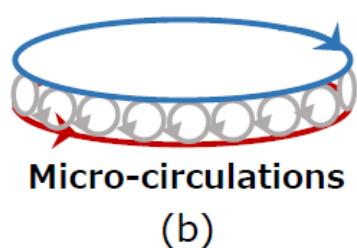
$$E\mu_{pre}(\varphi_{12}:\varphi_{12}^* + \varphi_{34}:\varphi_{34}^*) \rightarrow \frac{E}{2}\mu_u(\varphi_{12} + \varphi_{34}) + \frac{E}{2}\mu_u(\varphi_{12}^* + \varphi_{34}^*)$$



< Orthogonal dimension of a conjugate pair of circulations >



(a) A conjugate pair in the Pre-cosmos

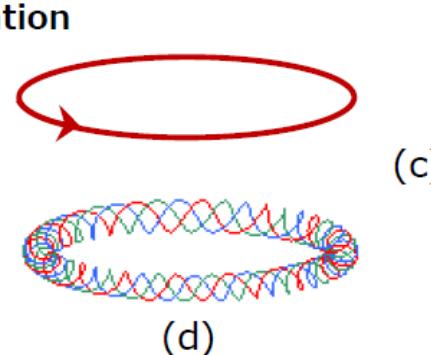


Flat separation



Micro-circulations

(b)



(c)

(d)

1D stretch in \mathbf{X}_1 larger than the threshold amplitude (radius in (b)):

Orthogonal separation of conjugate pair in \mathbf{X}_3 - \mathbf{X}_4 : \mathbf{X}_1 is orthogonal

Single circulation: helical motion in \mathbf{X}_3 , \mathbf{X}_4 , \mathbf{X}_1

Flat separation of conjugate pair in \mathbf{X}_1 - \mathbf{X}_2 : \mathbf{X}_5 is orthogonal

Single circulation: helical motion in \mathbf{X}_1 , \mathbf{X}_2 , \mathbf{X}_5

< Galactic evolution >

Space expansion:

Decoupled conjugate pairs \rightarrow 4 dimensions expand

\rightarrow no longer can keep as a continuum

Energy distribution just after the cosmic separation:

$$< 4D \text{ polar} > \quad \mathbf{X} = [\mu_u \quad \theta_1 \quad \theta_2 \quad \theta_3] = [\mu_u \quad \omega t \quad \theta_2 \quad \omega t]$$

$$< 4D \text{ cartesian} > \quad \mathbf{X} = \mu_u \left(\begin{array}{l} \cos \omega t + i \sin \omega t \cos \theta_2 + j \sin \omega t \sin \theta_2 \cos \omega t \\ + k \sin \omega t \sin \theta_2 \sin \omega t \end{array} \right)$$

Energy distributed in 3D surface of a sphere in 4D:

< Take new base vectors for circulation $\mu_u \theta_1$ >

$$\mathbf{e}_0 \equiv \cos \theta_1 + i \sin \theta_1 \text{ (radius)}$$

$$\mathbf{e}_1 \equiv \cos(\theta_1 + \pi/2) + i \sin(\theta_1 + \pi/2) = i\mathbf{e}_0 \text{ (arc)}$$

< 3D cartesian coordinates for 3D surface >

$$\mathbf{X} = \mu_u (\omega t \mathbf{e}_1 \cos \theta_2 + \sin \theta_2 (j \cos \omega t + k \sin \omega t))$$

$$= \mu_u [\omega t \cos \theta_2 \quad \sin \theta_2 \cos \omega t \quad \sin \theta_2 \sin \omega t]$$

Space energy / Apparent energy:

Symmetric part of cosmic energy → **Space energy** (energy of vacuum space)

Asymmetric part → **Apparent energy** (observable energies)

Spacia: Space energy in one minimum space unit (radius μ_0)

$$E_\mu \psi_\mu = E_\mu [X \quad H] = E_\mu \mu_0 (\exp(i\omega_0 t) + \exp(-i\omega_0 t))$$

$$v_c = \pm \mu_0 \omega_0 = \pm c, \quad E_\mu = m_\mu \mu_0^2 \omega_0^2 = m_\mu c^2$$

Cyclic decomposition / Division of energy circulations:

Initial apparent energy → repeat cyclic decompositions → **galactic seeds** → galactic seed division/separation → release **stellar seeds** → release daughter circulations → repeat cyclic decompositions → **elementary circulations**

Elementary single circulations; iS , S :

Minimum radius equal to μ_0 of spacia

$$E_{(iS)} \psi_{iS} = E_{(iS)} \mu_0 \exp(i\omega_0 t) = E_{(iS)} [X \quad H] = E_{(iS)} \mu_0 [\cos \omega_0 t \quad \sin \omega_0 t]$$

$$E_{(S)} \psi_S = E_{(S)} \mu_0 \exp(i\omega_0 t) = E_{(S)} [X \quad Y] = E_{(S)} \mu_0 [\cos \omega_0 t \quad \sin \omega_0 t]$$

$$E_{(iS)} = E_{(S)} = m_0 \mu_0^2 \omega_0^2 = m_0 c^2$$

Particle: defined as an energy circulation

- Can be static to the space energy.
- Keeps a constant radius determined by its energy amount.
- Interacts with another circulation to show a force (attractive / repulsive).

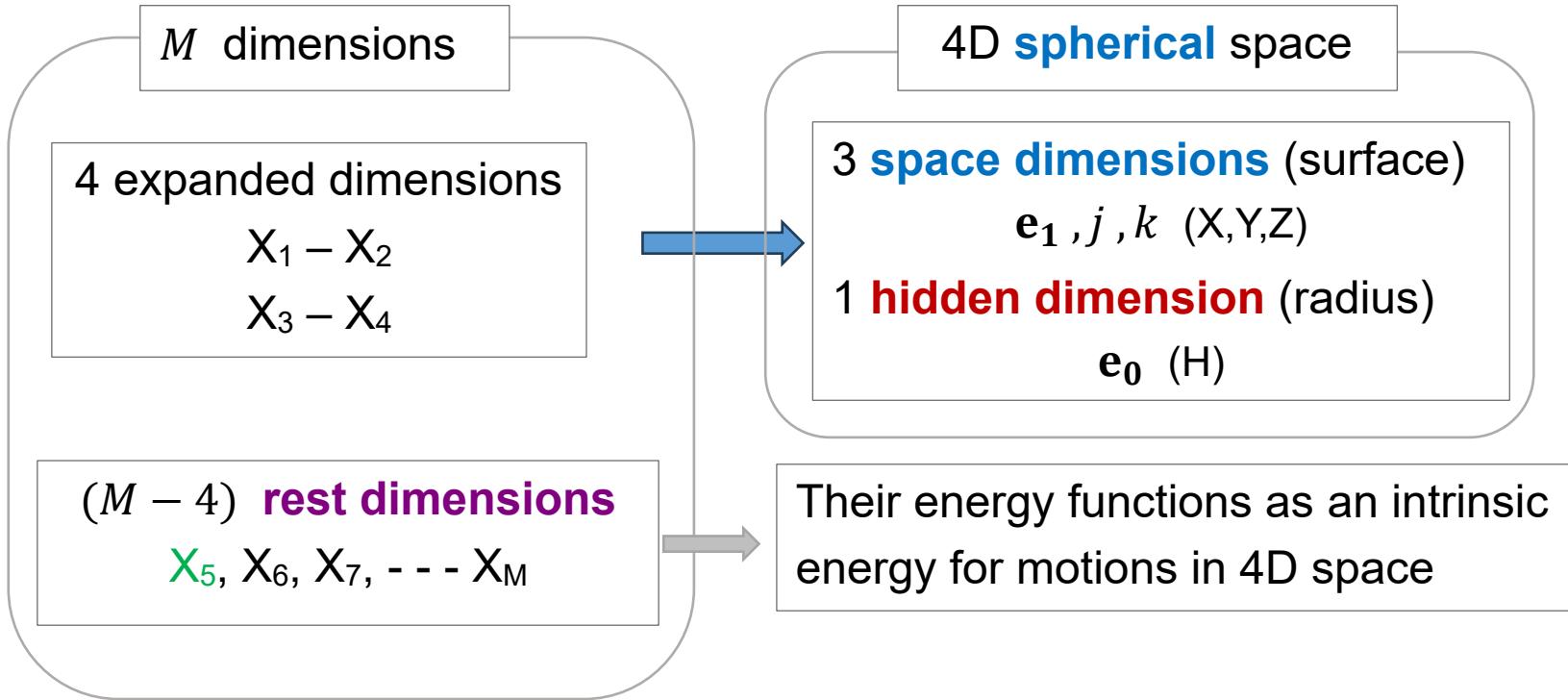
Elementary circulations: single or double circulations, or their excitations

$$iS, S, iD(iS: \bar{iS}), D(S: \bar{S}), iD^\#, D^\#$$

Quantum particle: composition of elementary circulations in a single space

Mesons, Baryons

< Types of dimensions >



Fifth dimension X_5 (see p5): **circular momentum**

Other rest dimensions X_{od} : **no momentum** (conjugate pair)

< Momentums in the Fifth Dimension X_5 >

(1) Just after the cosmic separation

Local intrinsic energies were helically moving on X_1 - X_2 .

ΔE : Energy of **one cycle** of **local circulation** including X_5

$$\Delta E = \Delta M(\mu_0^2 \omega_5^2 + \mu_u^2 \omega^2)$$

μ_u : Radius of main circulation (universe) \rightarrow rapidly **expand**

μ_0 : Radius of local circulation including X_5 \rightarrow remain **constant**

Momentum in X_5 of one local circulation:

$$\Delta p_5 = \Delta M \mu_0 \omega_5$$

Force between **2 halves** of circle (**linear approximation**):

$$F = K_f \frac{p_{5.1} p_{5.2}}{d^2}, \quad (\cos \theta_p \sin \theta_1 \sin \theta_2 = 1)$$

$$F_5 \approx -K_f \frac{(\Delta M \mu_0 \omega_5 / 2)^2}{(2\mu_0)^2}$$

(2) With space expansion and galactic evolution

- ✧ Number of spaciæ increases.
- ✧ Number of local circulations including X_5 increases.
- ✧ The radius remains constant as μ_0 .
- ✧ The intrinsic energy ΔM remains constant.
- ✧ The frequency ω_5 decreases.

Momentums in X_5 : spread, incorporated in **all intrinsic energies**

Within one **elementary single circulation**:

$$\text{Energy of the particle: } E = m_0 \mu_0^2 \omega_0^2 = m_0 c^2$$

Intrinsic energy m_0 is derived from motions in the **rest dimensions**.

$$m_0 = E_5 + E_{od} = m_5 c^2 + m_{od} c^2$$

$$k \equiv (m_s + m_{od})/m_s > 1$$

$$m_5 = \frac{m_0}{k c^2}$$

m_5 : intrinsic energy in X_5 , m_{od} : intrinsic energy in other rest dimensions

< Gravitational force - 1 >

Definition of the gravitational force:

Fundamental force acting between **momentums** in the **fifth dimension**

Gravitational force within an **elementary single circulation** ($E = m_0 c^2$):

$$E_5 = m_5 c^2$$

$$m_5 = \frac{m_0}{k c^2}$$

Call E_5 as **g-circulation**: m_5 is circulating with μ_0 and ω_0 in $X-X_5$.

X : Distance direction in 3D space

$$E_5 \psi_5 = E_5 [X \quad X_5] = E_5 \mu_0 [\cos \omega_0 t \quad \sin \omega_0 t]$$

$$E_5 = m_5 \mu_0^2 \omega_0^2 = m_5 c^2$$

We will calculate the force in X between two halves of g-circulation.

< Fundamental force between two halves of circulation >

Divide a circulation to two halves:

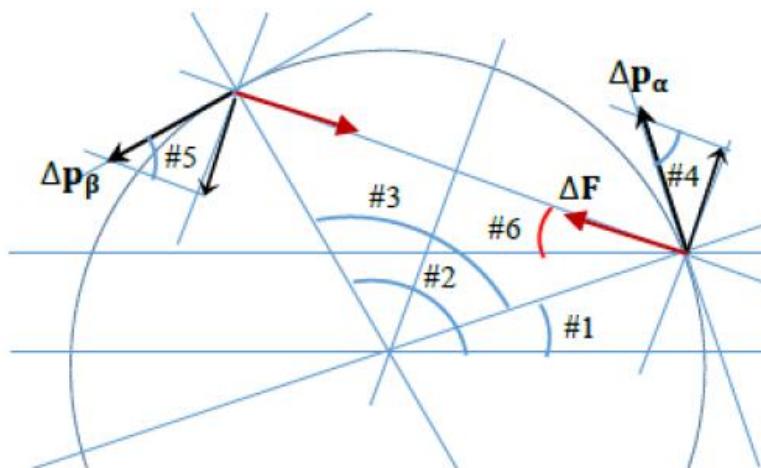
$$-\frac{\pi}{2} \leq \alpha \leq \frac{\pi}{2}, \quad \frac{\pi}{2} \leq \beta \leq \frac{3\pi}{2}, \quad \theta \equiv \beta - \alpha$$

Force between Δp_α and Δp_β :

$$\Delta F = K_f \frac{\Delta p_\alpha \Delta p_\beta}{d^2} \sin \frac{\theta}{2} \sin \frac{-\theta}{2} = -K_f \frac{\Delta p_\alpha \Delta p_\beta}{4\mu_0^2}$$

Component in the space direction X:

$$\Delta F_x = \Delta F \cos \gamma = \Delta F \sin \frac{\alpha + \beta}{2} = \Delta F \left(\sin \frac{\alpha}{2} \cos \frac{\beta}{2} + \cos \frac{\alpha}{2} \sin \frac{\beta}{2} \right)$$



- #1: α
- #2: β
- #3: $\theta = \beta - \alpha$
- #4: $\theta/2$
- #5: $-\theta/2$
- #6: γ

$$\gamma = \frac{\pi}{2} - \frac{\theta}{2} - \alpha = \frac{\pi}{2} - \frac{\alpha + \beta}{2}$$

$$d = 2\mu_0 \sin \frac{\theta}{2}$$

Force in X on $\Delta\mathbf{p}_\alpha$ from the entire momentum \mathbf{p}_π in the half circle $\pi/2 \leq \beta \leq 3\pi/2$:

$$p_h \equiv p_\pi = \Delta p_\beta \int_{\pi/2}^{3\pi/2} d\beta = \Delta p_\beta \pi, \quad \Delta p_\beta = p_h/\pi$$

$$\begin{aligned} F_x(\alpha) &= \int_{\pi/2}^{3\pi/2} \Delta F_x \partial\beta = \int_{\pi/2}^{3\pi/2} \Delta F \left(\sin \frac{\alpha}{2} \cos \frac{\beta}{2} + \cos \frac{\alpha}{2} \sin \frac{\beta}{2} \right) \partial\beta \\ &= -K_f \frac{\Delta p_\alpha}{4\mu_0^2} \frac{p_h}{\pi} 2\sqrt{2} \cos \frac{\alpha}{2} \end{aligned}$$

Force in X between two **half-circle momentums**, \mathbf{p}_0 and \mathbf{p}_π :

$$\begin{aligned} F_x &= \int_{-\pi/2}^{\pi/2} F_x(\alpha) \partial\alpha = -K_f \frac{2\sqrt{2}}{4\mu_0^2} \frac{p_h^2}{\pi^2} \int_{-\pi/2}^{\pi/2} \cos \frac{\alpha}{2} \partial\alpha \\ &= -\frac{8}{\pi^2} K_f \frac{p_h^2}{(2\mu_0)^2} \end{aligned}$$

< Gravitational force within an elementary single circulation >

g-circulation of an elementary single circulation:

$$E_5 = m_5 \mu_0^2 \omega_0^2 = m_5 c^2, \quad m_5 = \frac{m_0}{k c^2}$$

Half-circle momentum of g-circulation:

$$p_h = \frac{m_5 c}{2} = \frac{m_0}{2 k c}$$

Gravitational force between two half-circle momentums:

$$\begin{aligned} F_x &= -\frac{8}{\pi^2} K_f \frac{(m_5 c/2)^2}{(2\mu_0)^2} = -\frac{8}{\pi^2 k^2 c^2} K_f \frac{(m_0/2)^2}{(2\mu_0)^2} \\ &= -G \frac{(m_0/2)^2}{(2\mu_0)^2} \equiv F_g \end{aligned}$$

$$G \equiv \frac{8}{\pi^2 k^2 c^2} K_f, \quad k \equiv \frac{m_s + m_{od}}{m_s} > 1$$

Gravitational constant G is derived.

Electric force between 2 halves of iS :

$$F_e = -\frac{8}{\pi^2} K_f \frac{(m_0 c/2)^2}{(2\mu_0)^2} = -K_e \frac{e^2}{(2\mu_0)^2}$$

$$K_e \equiv \frac{8}{\pi^2} K_f, \quad e \equiv \frac{1}{2} m_0 c$$

Comparison of **gravitational force** and **electric force** within the same iS .

$$F_g = -\frac{8}{\pi^2 k^2 c^2} K_f \frac{(m_0/2)^2}{(2\mu_0)^2}, \quad F_e = -\frac{8}{\pi^2} K_f \frac{(m_0 c/2)^2}{(2\mu_0)^2}$$

$$G = \frac{K_e}{k^2 c^2}, \quad k = (m_s + m_{od})/m_s > 1$$

$$F_g = \frac{F_e}{k^2 c^4} = \frac{F_e}{k^2 \times 8.1 \times 10^{33}} \approx F_e \times 10^{-34}$$

< Gravitational force between two static quantum particles >

All intrinsic energies are connected each other by a series of g-circulations in X_5 - X , defined as **g-chain**.

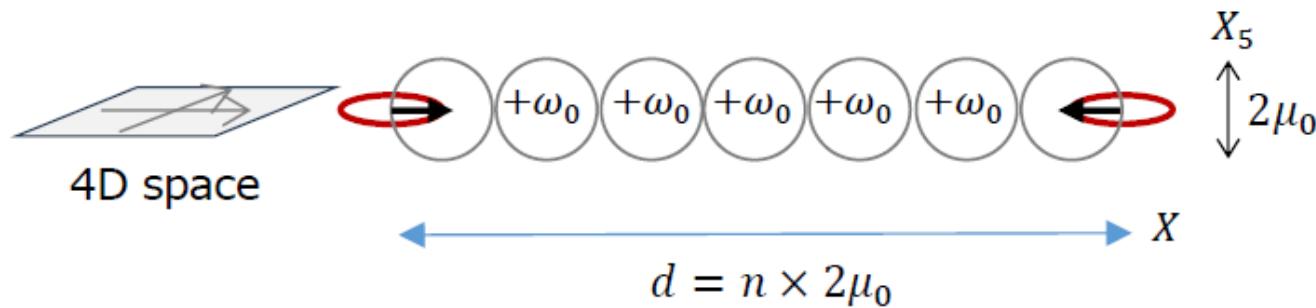
Quantum particle of $E = mc^2$:

$$m_5 = \frac{m}{k^2 c^2}$$

Gravitational force within a quantum particle:

$$F_g = -G \frac{(m/2)^2}{(2\mu_0)^2}$$

Gravitational force between **two** quantum particles:



Case of $n = 1$ (two particles adjacent – one g-circulation):

$$m_5(n = 1) = \frac{2m}{k^2 c^2} = 2m_5, \quad E_5(n = 1) = 2m_5 c^2$$

$$F_g = -G \frac{m^2}{(2\mu_0)^2}$$

Case of $n \gg 1$ (atomic scale distance $n > 10^4$):

In general, **potential energy** can be defined as

$$U(x) \equiv \int_{x_0}^x (-F(x)) dx + U(x_0)$$

Gravitational potential energy:

Let the energy of a g-circulation for $n = 1$ be $U_g(2\mu_0)$.

$$U_g(x) \equiv \int_{2\mu_0}^x (-F_g(x)) dx + U_g(2\mu_0)$$

$$U_g(2\mu_0) \equiv 2m_5 c^2$$

Practical distances greater than atomic size: We can treat $U_g(x)$ as a **constant**.

$$U_g(x) \approx U_g(\infty) \equiv U_g$$

Between 2 particles, the g-chain consists of n g-circulations.

Energy of g-chain = U_g , Energy of one g-circulation = U_g/n

$$E_5(n) = 2m_5c^2/n \text{ (in each g-circulation)}$$

Force on one particle: intra-circulation force on the **half-circle** of **one** g-circulation.

$$F_g(x) = -G \frac{(\mathbf{m}/\mathbf{n})^2}{(2\mu_0)^2} = -G \frac{m^2}{(\mathbf{n} \times 2\mu_0)^2} = -G \frac{m^2}{x^2}$$

Gravitational force is **inversely proportional** to the **square** of the **distance**.

Only **attractive** since it is an **intra-circulation force**.

Between **any two static quantum particles** (masses m_1 and m_2) :

$$\mathbf{F}_g(x) = -G \frac{m_1 m_2}{x^2} \mathbf{e}_d$$

Gravitational force on a particle from a **cluster of particles**:

Sum of vectors of individual forces

< Gravitational force under the free motion >

Free motion is defined as:

that an object is **freely accelerated** by receiving a force.

The **total energy** does **not change**.

Potential energy: Let us define as

$$E_p(x) \equiv \int_{\infty}^x (-F(x))dx , \quad E_p(\infty) \equiv 0 \text{ (reference)}$$

For gravitational, magnetic, and inter-circulation forces.

(For electric force, we use a different reference at $x = 2\mu_0$.)

The reference of gravitational potential energy is changed to $E_p(\infty) \equiv 0$.

Kinetic energy: $E_k(x) = -E_p(x)$

Rest energy: $E_r(x) \equiv E_t(x) - E_k(x) = mc^2 + E_p(x)$

Total energy: $E_t(x) = E_r(x) + E_k(x) = mc^2$

The potential energy is incorporated in the rest energy.

< Helical expression >

Liner energy: $E_L(x) = mv^2$

Circular energy: $E_c(x) = mC_r^2 = m(c^2 - v^2)$

Total energy: $E_t(x) = E_c(x) + E_L(x) = mc^2$

By receiving a force, the linear velocity v is accelerated.

General formula for the gravitational force:

The charge for the fundamental force is the orthogonal momentum.

$$_r p = p \sin \theta$$

3D charge for the gravitational force is the **orthogonal mass**.

$$_r m = _r E / c^2 = m(1 - v^2 / c^2)$$

$$\mathbf{F}_g(x) = -G \frac{r m_1 \ r m_2}{x^2} \mathbf{e}_d$$

Light: $v = c$, $_r m = 0$ in propagating direction (light speed does not change)

$v = 0$, $_r m = \frac{E(\gamma)}{c^2} = \frac{m_0}{2} \frac{\omega^2}{\omega_0^2}$ in **orthogonal** direction (propagation **bends**)